Bounding sums of the Möbius function over arithmetic progressions
نویسنده
چکیده
Let M(x) = ∑ 1≤n≤x μ(n) where μ is the Möbius function. It is well-known that the Riemann Hypothesis is equivalent to the assertion that M(x) = O(x1/2+ ) for all > 0. There has been much interest and progress in further bounding M(x) under the assumption of the Riemann Hypothesis. In 2009, Soundararajan established the current best bound of M(x) √ x exp ( (log x)(log log x) ) (setting c to 14, though this can be reduced). Halupczok and Suger recently applied Soundararajan’s method to bound more general sums of the Möbius function over arithmetic progressions, of the form M(x; q, a) = ∑ n≤x n≡a (mod q) μ(n). They were able to show that assuming the Generalized Riemann Hypothesis, M(x; q, a) satisfies M(x; q, a) √ x exp ( (log x)(log log x) ) for all q ≤ exp ( log 2 2 b(log x) 3/5(log log x)11/5c ) , with a such that (a, q) = 1, and > 0. In this paper, we improve Halupczok and Suger’s work to obtain the same bound for M(x; q, a) as Soundararajan’s bound for M(x) (with a 1/2 in the exponent of log x), with no size or divisibility restriction on the modulus q and residue a.
منابع مشابه
Squarefree polynomials and Möbius valuesin short intervalsand arithmetic progressions
Abstract. We calculate the mean and variance of sums of the Möbius function μ and the indicator function of the squarefrees μ, in both short intervals and arithmetic progressions, in the context of the ring Fq[t] of polynomials over a finite field Fq of q elements, in the limit q → ∞. We do this by relating the sums in question to certain matrix integrals over the unitary group, using recent eq...
متن کاملOn the Average Value of Divisor Sums in Arithmetic Progressions
We consider very short sums of the divisor function in arithmetic progressions prime to a fixed modulus and show that “on average” these sums are close to the expected value. We also give applications of our result to sums of the divisor function twisted with characters (both additive and multiplicative) taken on the values of various functions, such as rational and exponential functions; in pa...
متن کاملDiscrepancy of Sums of two Arithmetic Progressions
Estimating the discrepancy of the hypergraph of all arithmetic progressions in the set [N ] = {1, 2, . . . , N} was one of the famous open problems in combinatorial discrepancy theory for a long time. An extension of this classical hypergraph is the hypergraph of sums of k (k ≥ 1 fixed) arithmetic progressions. The hyperedges of this hypergraph are of the form A1 + A2 + . . . + Ak in [N ], wher...
متن کاملDiscrepancy of Sums of Three Arithmetic Progressions
The set system of all arithmetic progressions on [n] is known to have a discrepancy of order n1/4. We investigate the discrepancy for the set system S3 n formed by all sums of three arithmetic progressions on [n] and show that the discrepancy of S3 n is bounded below by Ω(n1/2). Thus S3 n is one of the few explicit examples of systems with polynomially many sets and a discrepancy this high.
متن کاملOn rainbow 4-term arithmetic progressions
{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...
متن کامل